Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Implement Queue Using Stacks
Implement the following operations of a queue using stacks.
- push(x) – Push element x to the back of queue.
- pop() – Removes the element from in front of queue.
- peek() – Get the front element.
- empty() – Return whether the queue is empty.
Notes:
- You must use only standard operations of a stack – which means only push to top, peek/pop from top, size, and is empty operations are valid.
- Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
- You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).
House Robber III
The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the “root.” Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that “all houses in this place forms a binary tree”. It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
1 2 3 4 5 |
|
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
Example 2:
1 2 3 4 5 |
|
Maximum amount of money the thief can rob = 4 + 5 = 9.
Factorial Trailing Zeroes
Given an integer n, return the number of trailing zeroes in n!.
Note:
Your solution should be in logarithmic time complexity.
Burst Balloons
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
- You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
- 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
Example:
Given [3, 1, 5, 8]
Return 167
1 2 |
|
Binary Tree Level Order Traversal II
Given a binary tree, return the bottom-up level order traversal of its nodes’ values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree [3,9,20,null,null,15,7],
1 2 3 4 5 |
|
return its bottom-up level order traversal as:
1 2 3 4 5 |
|
Best Time to Buy and Sell Stock III
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Reverse Integer
Reverse digits of an integer.
- Example1: x = 123, return 321
- Example2: x = -123, return -321
Note
Here are some good questions to ask before coding. Bonus points for you if you have already thought through this!
If the integer’s last digit is 0, what should the output be? ie, cases such as 10, 100.
Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases?
For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.
Data Stream as Disjoint Intervals
Given a data stream input of non-negative integers a1, a2, …, an, …, summarize the numbers seen so far as a list of disjoint intervals.
For example, suppose the integers from the data stream are 1, 3, 7, 2, 6, …, then the summary will be:
1 2 3 4 5 |
|
Follow up:
What if there are lots of merges and the number of disjoint intervals are small compared to the data stream’s size?
Create Maximum Number
Given two arrays of length m and n with digits 0-9 representing two numbers. Create the maximum number of length k <= m + n from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k digits. You should try to optimize your time and space complexity.
Example 1:
nums1 = [3, 4, 6, 5] nums2 = [9, 1, 2, 5, 8, 3] k = 5 return [9, 8, 6, 5, 3]
Example 2:
nums1 = [6, 7] nums2 = [6, 0, 4] k = 5 return [6, 7, 6, 0, 4]
Example 3:
nums1 = [3, 9] nums2 = [8, 9] k = 3 return [9, 8, 9]