卖萌的弱渣

I am stupid, I am hungry.

Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

Example

Given the following triangle

1
2
3
4
5
6
[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

Solution

  • dp[j]: 表示某一行每一列的最小值
  • 从下往上便利
  • dp[j] = triangle[i][j]+min(dp[j],dp[j+1])

  • Java

(Triangle.java) download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int[] dp = new int[n];
        for (int i=0;i<n;i++)
                dp[i] = triangle.get(n-1).get(i);
        for (int i=n-2; i>=0; i--){
            for (int j=0;j<=i;j++){
                dp[j] = Math.min(dp[j+1],dp[j])+triangle.get(i).get(j);
            }
        }
        return dp[0];
    }
}
  • Python
(Triangle.py) download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """

        #dp[i][j]: 某一行第i列 = List[i][j] + min(dp[i-1][j-1], dp[i-1][j+1])
        #记住上一行的所有列的dp即可
        n = len(triangle)
        dp = [0]*n

        #init: from bottom to top
        for i in range(n):
            dp[i] = triangle[n-1][i]

        for i in range(n-2,-1,-1):
            for j in range(i+1):
                dp[j] = triangle[i][j]+min(dp[j],dp[j+1])
        return dp[0]