Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6.
Practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Solution
algorithm that operates on arrays: it starts at the left end (element A[1]) and scans through to the right end (element A[n]), keeping track of the maximum sum subvector seen so far. The maximum is initially A[0]. Suppose we’ve solved the problem for A[1 .. i - 1]; how can we extend that to A[1 .. i]? The maximum
sum in the first I elements is either the maximum sum in the first i - 1 elements (which we’ll call MaxSoFar), or it is that of a subvector that ends in position i (which we’ll call MaxEndingHere).
MaxEndingHere is either A[i] plus the previous MaxEndingHere, or just A[i], whichever is larger.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|