Find Peak Element
There is an integer array which has the following features:
- The numbers in adjacent positions are different.
- A[0] < A[1] && A[A.length - 2] > A[A.length - 1].
We define a position P is a peek if:
A[P] > A[P-1] && A[P] > A[P+1]
Find a peak element in this array. Return the index of the peak.
Example
Given [1, 2, 1, 3, 4, 5, 7, 6]
Return index 1 (which is number 2) or 6 (which is number 7)
Note
The array may contains multiple peeks, find any of them.
Challenge
Time complexity O(logN)
Solution
- Time: O(log n)
- 若A[mid] > A[mid - 1] && A[mid] < A[mid + 1],则找到一个peak为A[mid];
- 若A[mid - 1] > A[mid],则A[mid]左侧必定存在一个peak,可用反证法证明:若左侧不存在peak,则A[mid]左侧元素必满足A[0] > A[1] > … > A[mid -1] > A[mid],与已知A[0] < A[1]矛盾,证毕。
- 同理可得若A[mid + 1] > A[mid],则A[mid]右侧必定存在一个peak
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|